Comparison results for multidimensional difference equations
نویسندگان
چکیده
منابع مشابه
global results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
Lie Symmetries of Multidimensional Difference Equations
A method is presented for calculating the Lie point symmetries of a scalar difference equation on a two-dimensional lattice. The symmetry transformations act on the equations and on the lattice. They take solutions into solutions and can be used to perform symmetry reduction. The method generalizes one presented in a recent publication for the case of ordinary difference equations. In turn, it ...
متن کاملOptimized Difference Schemes for Multidimensional Hyperbolic Partial Differential Equations
In numerical solutions to hyperbolic partial differential equations in multidimensions, in addition to dispersion and dissipation errors, there is a grid-related error (referred to as isotropy error or numerical anisotropy) that affects the directional dependence of the wave propagation. Difference schemes are mostly analyzed and optimized in one dimension, wherein the anisotropy correction may...
متن کاملNonstandard finite difference schemes for differential equations
In this paper, the reorganization of the denominator of the discrete derivative and nonlocal approximation of nonlinear terms are used in the design of nonstandard finite difference schemes (NSFDs). Numerical examples confirming then efficiency of schemes, for some differential equations are provided. In order to illustrate the accuracy of the new NSFDs, the numerical results are compared with ...
متن کاملSubanalytic solutions of linear difference equations and multidimensional hypergeometric sequences
We consider linear difference equations with polynomial coefficients over C and their solutions in the form of doubly infinite sequences (sequential solutions). We investigate the C-linear space of subanalytic solutions, i.e., those sequential solutions that are the restrictions to Z of some analytic solutions of the original equation. It is shown that this space coincides with the space of the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 1988
ISSN: 0022-247X
DOI: 10.1016/0022-247x(88)90168-0